Pediatric Epilepsy

Asim Shahid, MD
Assistant Professor
Department of Pediatrics
Division of Pediatric Epilepsy
Rainbow Babies and Children's Hospital
Cleveland, OH
Definitions

• Seizure:
 – “The action of capturing someone or something using force”
 – A sudden disruption of brain’s normal electrical activity accompanied by altered consciousness or other neurological or behavioral manifestations
Definitions

• Epilepsy
 – A neurological disorder in which a person has repeated seizures over time

Introduction

• Epilepsy affects 1-2% of the population
• 1/10 Americans will have a seizure at some point
• At least 200,000 have at least one seizure/month
• 25% of all epilepsy cases develop before the age of 5 years
• About 125,000 new cases diagnosed each year
Main Seizure types

- Generalized seizures:
 - Abnormal electrical activity exists in all regions of the brain at the same time

- Partial (Focal) seizures:
 - Seizure onset is in one part of the brain—also called the ‘epileptic focus’

Tools used in the diagnosis

- History and Physical !!
- EEG
- MRI (High resolution is preferred)
- PET scan
Major Seizure Types

• GTC
 – Loud cry at onset
 – Stiffening of all extremities
 – Followed by rhythmic jerking of all extremities
 – LOC
 – Tongue bite, incontinence
 – Sleepiness afterwards

Major Seizure Types

• Absence seizures
 – Sudden loss of awareness
 – Brief duration
 – High frequency
 – No post ictal confusion
Major Seizure Types

• Myoclonic seizures
 – Brief, sometimes violent jerking of trunk or extremities
 – May have multifocal jerks
 – No LOC if brief
 – May have repeated myoclonic jerks

Major Seizure Types

• Atonic seizure
 – Sudden loss of tone
 – May or may not be associated with a fall
 – No LOC if brief
 – May be preceded by a myoclonic jerk
Pediatric Epileptic Syndromes

Pediatric Epileptic syndromes

• Epilepsy syndrome
 – A cluster of signs and symptoms regularly occurring together
 – must involve more than just the seizure type; thus frontal lobe seizures, for instance, do not constitute a syndrome

• Epileptic encephalopathy
 – the epileptic processes itself contributes to the disturbance in cerebral function

• Benign epilepsy syndrome
 – characterized by seizures that are easily treated, or require no treatment and remit without sequelae
Pediatric epileptic syndromes

- Benign familial and non-familial neonatal seizures
- Symptomatic neonatal seizures
- Severe neonatal seizures
- Infantile spasms and West syndrome
- Malignant migrating seizures in infancy
- Benign myoclonic epilepsy in infancy
- Severe myoclonic epilepsy in infancy
- Malignant astatic epilepsy
- Lennox-Gastaut syndrome
- Epileptic status in non-progressive encephalopathies
- Febrile seizures
- Idiopathic or benign epilepsies in childhood
- Idiopathic localization related epilepsies in infants and young children
- Epilepsy with centro-temporal spikes
- Idiopathic childhood occipital epilepsies
- Idiopathic childhood epilepsy in infants
- ESES syndrome
- Electrical Status Epilepticus during slow-wave sleep
- Childhood absence epilepsy
- Myoclonic absences
- Reflex epilepsies
- Juvenile absence epilepsy
- Juvenile myoclonic epilepsy
- Progressive myoclonic epilepsies
- Epilepsies and chromosomal abnormalities
- Rasmussen syndrome

Epileptic syndromes in:

- **Neonates**
 - Early Infantile Epileptic Encephalopathy
 - Early Myoclonic Encephalopathy

- **Infancy & early childhood**
 - Infantile spasms
 - Lennox-Gastaut Syndrome
 - MAE (Doose Syndrome)
 - Landau-Kleffner Syndrome (LKS)

- **Childhood**
 - Typical absence seizures
 - Absence with myoclonus
 - Benign rolandic epilepsy

- **Adolescence**
 - Juvenile myoclonic epilepsy
Neonates

Awake & Asleep
Ohtahara syndrome (EIEE)

- Newborns in the first three months (typically within 10 days of life)
- Affects boys more than girls
- Seizure: primarily tonic, less often - partial or myoclonic
- Common etiologies: metabolic disorders, structural damage, unknown

Ohtahara syndrome

- EEG: burst suppression
- Treatment: Antiepileptic drugs or corticosteroids occasionally helpful
- Severely progressive course
 - Frequent seizures
 - Accompanied by physical and mental retardation
 - May progress to other syndromes: West and LGS
Early Myoclonic Encephalopathy

- Onset: within first month of life
- Myoclonic jerks -> partial seizures/massive myoclonus/IS/tonic seizures
- Delayed milestones, hypotonia, progressive cerebral atrophy

Ohthara vs EME

- Etiology - structural brain lesions are most probable
- Seizure: tonic spasms
- EEG: burst-suppression (BS) in both waking and sleeping states
- BS evolves to hypsarrhythmia around 3-4 months of age, and sometimes further to diffuse slow spike-waves
- Course: evolution to West syndrome, and further to LGS
- Etiology - non-structural/metabolic disorders
- Seizure - myoclonia and frequent partial motor seizures
- EEG - BS more apparent in sleep
- BS may persist up to late childhood after a transient evolution to hypsarrhythmia in the middle to late infancy
- Course: may have a transient phase of West syndrome.
Infants

30 microvolts
Hypsarrhythmia

- High amplitude asynchronous slow waves intermixed with multifocal spikes
- Appears in sleep first, and later in wakefulness
- Sleep may show a burst-suppression like pattern
- Is an interictal pattern
Infantile Spasms

- Peak frequency is from 4 to 9 months
- Boys > girls
- Resistant to treatment
- Brief flexion or rarely extension of extremities, and appear in clusters
- Multiple etiologies
- In 30%, no specific etiology is found
- Main treatment options include ACTH and vigabatrin. VPA and clonazepam may be considered
Lennox-Gastaut Syndrome

- Age of onset between 3-5 years
- Have tonic, myoclonic, atonic, atypical absence seizures
- Mental retardation
- Irregular, slow, spike pattern in wakefulness and generalized fast in sleep
- Intractable seizures
- VPA, RUF, TPM, LTG, ZNS, VNS or ketogenic diet may help in some cases
Children
Absence Epilepsy

- Prevalence: 2% to 8%
- Age of onset= 4-10 years with peak at 5-7 years
- Typically ♀ > ♂
- Genetically determined
- + family history of seizures
- Average seizure duration → 4-20 seconds
Absence Epilepsy

- Seizures are of:
 - Short duration
 - Abrupt onset
 - Abrupt termination
 - Impairment of consciousness
 - High frequency
- EEG shows ~3.5-4 Hz at onset, with 0.5-1 Hz at the end
- HV precipitates attacks in 95-100% of untreated patients

Absence Epilepsy

- Good prognosis if no other seizure types are present
- First line agents are:
 - Ethosuximide
 - Valproic acid
Juvenile Absence Epilepsy

- Age at onset—9-13 years
- Typically ♀ = ♂
- (+) Genetic factors
- Average seizure duration 4-30 seconds
- ~80% will have GTCS and ~15-25% will have myoclonic jerks

Juvenile Absence Epilepsy

- Absence seizure are less frequent than CAE
- EEG shows 3-4 Hz generalized SPW
- HV brings out seizures in almost all patients
- Life long disorder with seizure control in majority of patients
- First line agent is VPA
<table>
<thead>
<tr>
<th>CAE</th>
<th>JAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset: 4-8yrs</td>
<td>Onset: 9-13yrs</td>
</tr>
<tr>
<td>Seizure – absence</td>
<td>Seizure – less</td>
</tr>
<tr>
<td></td>
<td>frequent absence</td>
</tr>
<tr>
<td></td>
<td>with longer duration,</td>
</tr>
<tr>
<td></td>
<td>GTCs-typically in</td>
</tr>
<tr>
<td></td>
<td>am, rarely-</td>
</tr>
<tr>
<td></td>
<td>myoclonic jerks</td>
</tr>
<tr>
<td>EEG: 3 Hz sp/w</td>
<td>EEG: 3-4 Hz sp/w</td>
</tr>
<tr>
<td>Prognosis: good</td>
<td>Prognosis: typically</td>
</tr>
<tr>
<td></td>
<td>not outgrown</td>
</tr>
</tbody>
</table>
Juvenile Myoclonic Epilepsy

- Mean age of onset is 14 years
- $\frac{3}{2} > \frac{1}{2}$
- $\frac{1}{3}$ have family history of epilepsy
- Accounts for 5-10% of all epilepsies
- 3 main seizure types
 - Myoclonic seizures — in almost all patients
 - GTCs — 80-90%
 - Absence seizures — 15-30%

Interictal EEG shows 3-6 Hz spike/polyspike-and-wave discharges
Myoclonic jerks show polyspike-and-wave discharges
Photo-paroxysmal response is seen in with polyspikes in ~33%
Juvenile Myoclonic Epilepsy

- First line agent: Valproate
- Other options include: LTG, LEV, TPM
- 80-90% can be well controlled on treatment
- General thought is that JME is for life
Benign Rolandic Epilepsy

- Most common focal idiopathic epilepsy of childhood
- (+) genetic predisposition
- 10-13% will only have one seizure
- 65-70% will have seizures in sleep or upon awakening
- 10-20% with seizures only in wakefulness

Benign Rolandic Epilepsy

- Hemifacial clonic seizures: brief, usually nocturnal, and occasionally generalized
- Somatosensory symptoms such as paresthesias
- Age of onset: between 3-14 years
- Boys affected more than girls
- Normal neurological exam
- Responds well to medications
Benign Rolandic Epilepsy

- Normal development
- No abnormality on imaging
- EEG: sleep activation of independent, high-voltage centro-temporal spikes and slow waves
- Complete remission by the mid-teenage years in more than 90%

Benign Occipital epilepsy

- Seizure: visual symptoms, may be followed by hemi-clonic seizures or automatisms
- Visual symptoms:
 - transient, partial, or complete loss of vision
 - elementary or complex visual hallucinations
 - visual illusions (eg, micropsia, metamorphosis)
- EEG: occipital sp/w in trains that block with eye opening
- Frequent migrainous headaches
Panayiotopoulos syndrome

- Subset of BOE
- Onset 4-8 yr-old
- Seizures: during sleep, vomiting w/ eye deviation, may last >30min
- Other autonomic symptoms: color change (especially pallor), flushing, cyanosis
- EEG – variable epileptiform discharges though tend to be posteriorly dominant

Landau-Kleffner Syndrome

- Unknown cause
- Onset between ages 2-8
- Sudden progressive language regression w/ verbal auditory agnosia
 - Unable to comprehend their own name or recognize common sounds from the environment (e.g., fire engine, doorbell)
- Occasional complete loss of speech w/ deterioration of behavior
 - May be mistaken for deafness, autism or a developmental language disorder
Landau-Kleffner Syndrome (LKS)

- Seizures - focal or generalized
- Common EEG pattern: continuous posterior temporal spikes often during sleep
- Treatment: anti-epileptic seizure medications such as VPA and/or steroids
- Surgical treatment with sub-pial transections
- Seizures remit by teenage years
- Persistent language/behavioral deficits in 50%
Continuous Slow Spike and Wave in Slow Sleep

- Child with partial seizures has cognitive deterioration
- EEG:
 - Generalized sp/w in >85% of slow-wave sleep
 - Awake EEG - focal or generalized epileptiform discharges during wakefulness
 - Abnormalities persist or stop unexpectedly
 - Cognitive problems may persist

Severe Myoclonic Epilepsy in Infancy (SMEI, Dravet syndrome)

- Occurs in the first year of life in previously healthy children
- Seizure: prolonged and repeated febrile and afebrile generalized or unilateral convulsive
- Course: emergence of cognitive deterioration, interictal myoclonus, clumsiness, ataxia
- Subsequent marked slowing / stagnation of psychomotor development, accompanied by psychotic or autistic traits and hyperactivity between 1-4 years
- De novo mutations of the SCN1A gene in one third
Severe Myoclonic Epilepsy in Infancy (SMEI, Dravet syndrome)

- SCN1A positive in about 70-80%
- Seizure control does not guarantee improvement in cognition
- Seizures are usually refractory to most medications
- Avoid AEDs used for partial epilepsies (OXC, CBZ, PHT etc)

Severe Myoclonic Epilepsy in Infancy (SMEI, Dravet syndrome)

- AEDs that seem to help:
 - VPA
 - Clobazam
 - Stiripentol (Not available in the US)
 - Ethosuximide
 - Ketogenic diet
Febrile Seizures

• Common, 3% of all children
• 6 months to 5 years, peak 20 months
• Complex/ Atypical
 – Focal
 – Duration > 15 minutes
 – More than 1 seizure during 24 hrs

• Differentiate from seizures with meningoencephalitis

Febrile Seizures
risk for recurrence

• 1/3 have 2nd seizure
• 1/2 of these have further seizures
• Risk for recurrence:
 – Increased with
 • seizure onset < 13 months
 • positive family history
 • Seizure with lower grade fever
 – Not increased with a complex seizure
Febrile Seizures
risk for epilepsy

- Complex febrile seizures
- Abnormal/ delayed development
- Family history of epilepsy

GEFS+

- Febrile seizures persist beyond 6 years of age or have associated afebrile tonic-clonic seizures
- 30% may have other epilepsy syndromes - absence, myoclonic, akinetic
- Self-limited, with seizure resolution by mid-adolescence
- Family members may have Dravets or Doose syndromes
- Autosomal dominant
- Typical course: febrile seizures in childhood → quiescent interval of many years → onset of different seizure type
Myoclonic-Astatic epilepsy
Doose syndrome

- Onset: 7mths - 6 yrs
- Normal development until seizure onset
- First seizure – typically febrile
- Subsequent symmetric myoclonic jerks followed by absent muscle tone resulting in head nods or severe falls
Myoclonic-Astatic epilepsy
Doose syndrome

- Less frequent: absence, tonic, repetitive myoclonic jerks resembling clonic-tonic-clonic seizures
- EEG-generalized spike or polyspike-wave discharges and theta frequencies in the parietal regions
- Genetics—probably polygenic
 - Found in some GEFS+ families
- Prognosis: variable, at least 50% go into remission, most with normal or slightly decreased cognition

Anti-Epileptic Drugs (AEDs)
General rules for starting AEDs

- Start with a single agent
 - Reduced toxicity
 - No interactions
 - Better compliance
 - Easy to control side effects

Side Effects

- Understanding adverse effects has an important role in deciding optimal therapy
- Certain adverse effects may be age dependent
- Side effect profile in children cannot be assumed from adult data
- In the past 15-20 years, newer medications have increased the treatment options for children
When to start treatment?

- 30-40% rate of seizure recurrence after single GTC
- Treatment is indicated when:
 - Recurrence is likely
 - Frequent seizures
 - “Dangerous seizures”
 - Abnormal EEG
 - Focal structural lesion
 - Strong family history of epilepsy

How to choose an AED?

- Things to consider:
 - Age of patient
 - Seizure type (Epilepsy syndrome)
 - Side effect profile
 - Available formulations
 - Drug interactions
 - Cost
Anti-Epileptic Medications

Drugs for Epilepsy

- phenobarbital 1912
- mephtobarbital (Mebaral) 1935
- phenytoin (Dilantin) 1938
- trimethadione (Tridione) 1946
- mephenytoin (Mesantoin) 1947
- paramethadione (Paradione) 1949
- phenytoine (Thiantoin)* 1950
- phenacemide (Phenurone) 1951
- metharbital (Gemonil)* 1952
- benzchorpropamid (Hibicon)* 1952
- phensuximide (Milontin) 1953
- primidone (Mysoline) 1954
- methsuximide (Celontin) 1957
- Ethotoim (Peganone) 1957
- aminoglutethimide (Eliptin)* 1960
- ethosuximide (Zarontin) 1960
- diazepam (Valium) 1968
- carbamazepine (Tegretol) 1974
- clonazepam (Klonopin) 1975
- valproate (Depakene) 1978
- clorazepate (Tranxene) 1981
- felbamat (Felbatol) 1993
- gabapentin (Neurontin) 1993
- lamotrigine (Lamictal) 1994
- fosphenytoin (Cerebyx) 1996
- topiramate (Topamax) 1996
- tiagabine (Gabitril) 1997
- levetiracetam (Keppra) 1999
- zonisamide (Zonegran) 2000
- oxcarbazepine (Trileptal) 2000
- pregabalin (Lyrica) 2005

*withdrawn from the market
AEDs

Partial seizures
- carbamazepine
- phenytoin
- gabapentin
- tiagabine
- oxcarbazepine
- pregabalin

Broad spectrum
- felbamate
- lamotrigine
- topiramate
- zonisamide
- levetiracetam

Most commonly used AEDs in pediatrics
- Levetiracetam
- Oxcarbazepine
- Valproic acid
- Topiramate
- Vigabatrin
- Lamotrigine
- Zonisamide
- Ethosuximide
- Rufinamide
- Felbamate
- Phenobarbital
Side Effects

- Sedation
- GI upset
- Rash (Lamotrigine)
- Interactions with other medications
- Behavioral changes (Levetiracetam)
- Renal stones (Zonisamide, topiramate)
- Metabolic disturbances (Oxcarbazepine, topiramate)

General stuff about AEDs
Anti-seizure drugs:
Half-life

- Long (over 24 hours):
 phenobarbital, phenytoin, lamotrigine, zonisamide
- Medium (12-24 hours):
 valproic acid, lamotrigine, topiramate
- Short (<12 hours):
 carbamazepine, gabapentin, oxcarbazepine, tiagabine, levetiracetam, pregabalin

Anti-seizure drugs:
Titration time

- Begin full dose:
 phenobarbital, phenytoin, gabapentin, levetiracetam, zonisamide, pregabalin
- 1-2 weeks:
 valproic acid, carbamazepine, oxcarbazepine
- Over 4 weeks:
 tiagabine, lamotrigine, topiramate
Anti-seizure drugs: Hepatic metabolism

- Inducers: phenobarbital, phenytoin, carbamazepine
 mild: topiramate, oxcarbazepine
- Inhibitor: valproic acid
- None: gabapentin, lamotrigine, tiagabine, levetiracetam, zonisamide, pregabalin

AED Interactions

<table>
<thead>
<tr>
<th>AED</th>
<th>Other AEDs affected</th>
<th>Other drugs affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inducers</td>
<td>CBZ, TPM, OXC, LTG, ZNS</td>
<td>Theophylline, warfarin, digoxin, OC</td>
</tr>
<tr>
<td>PB</td>
<td>CBZ, PHT, TPM, OXC, LTG, ZNS</td>
<td>Theophylline, warfarin, digoxin, OC</td>
</tr>
<tr>
<td>PHT</td>
<td>CBZ, PB, TPM, OXC, LTG, ZNS</td>
<td>Theophylline, warfarin, digoxin, OC</td>
</tr>
<tr>
<td>Mild inducers</td>
<td>TPM</td>
<td>Digoxin, OC</td>
</tr>
<tr>
<td></td>
<td>OXC</td>
<td>LTG</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>VPA</td>
<td>LTG</td>
</tr>
<tr>
<td>Non-inducers</td>
<td>GBP</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LEV</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LTG</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>PGB</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>TGB</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>VGB</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>ZNS</td>
<td>None</td>
</tr>
</tbody>
</table>
Indications for plasma drug levels

- Narrow therapeutic range
- Documentation of patient compliance
- Lack of efficacy/presence of toxicity
- Suspicion of drug interactions

“Routine” is NOT an indication

Important message…

- Remember, you can always start with a medication that is broad spectrum and has fewer side effects…you can seldom go wrong with your choice!
Status Epilepticus (SE)

- Is a medical emergency
- Seizure lasting longer than 30 minutes, or 2 or more seizures without complete recovery in between
- Refractory SE refers to SE that does not respond to first or second line AEDs
Status Epilepticus (SE)

- Convulsive status epilepticus is associated with epilepsy and cognitive and behavior impairments later in life
- Goal of treatment is to minimize the duration of seizures to reduce adverse outcomes
- More than 80% of children have febrile or other identifiable etiology

SE and mortality

- Factors that determine mortality
 - Duration of SE
 - Late initiation of effective treatment
 - Etiology of SE
 - Presence of identifiable CNS process
 - Age

Towne, Epilepsia 1994
Principles of Management

- Effective treatment requires early and robust pharmacological intervention
- 4 phases of convulsive status epilepticus management are recognized:
 - Pre hospital
 - Treatment in the ER
 - Second line treatment after failure of 1st line agents
 - Continuous infusion

Overview of AEDs used for SE

- Management of SE may be divided into:
 - First line therapy: Benzodiazepines
 - Second line therapy: Phenytoin
 - Third line therapy: ?
- The real challenge is to find the appropriate agent to control seizures after first and second line therapies have failed (refractory status)
- No clear standards are available for 3rd, 4th or 5th line medications
Lorazepam 0.1 mg/kg IV x1
Repeat lorazepam 0.1 mg/kg IV x1
Fosphenytoin 20mg/kg IV x1
Additional fosphenytoin 10mg/kg IV x1

REFRACTORY STATUS EPILEPTICUS

Midazolam bolus (0.2mg/kg) followed by continuous infusion 0.1 mg/kg/hr
Titrate infusion rate until seizures stop or 2mg/kg/hr is reached

Pentobarbital 5mg/kg bolus, followed by infusion at 1mg/kg/hr
Titrate until seizures stop or 3mg/kg/hr

Non-Pharmacologic Treatments
Ketogenic Diet

• About 20-30% of individuals will develop medically refractory epilepsy
• For this patient population, diet therapy can be highly efficacious
• It may be used in any age group, from infants to adults

Ketogenic Diet

• High fat, low protein and very low carbs
• Brain is forced to use ketones (from fats)
• This prevents the brain from using glucose as a source of energy
Ketogenic Diet

• Comprises of 1g/kg of protein and 5-10g/day of carbs, with the remaining calories (~75% of daily allowance) coming from long chain triglycerides

Ketogenic Diet

• The mechanism of action is not fully elucidated
• The thought is that ketosis can, through different metabolic pathways increase GABA concentration
Ketogenic Diet

Table 1. Epilepsy syndromes and conditions in which the KD has been reported as particularly beneficial

Probable benefit (at least two publications)
- Glucose transporter protein 1 (GLUT-1) deficiency
- Pyruvate dehydrogenase deficiency (PDHD)
- Myoclonic-astatic epilepsy (Doose syndrome)
- Tuberosclerosis complex
- Rett syndrome
- Severe myoclonic epilepsy of infancy (Dravet syndrome)
- Infantile spasms
- Children receiving only formula (infants or enterally fed patients)

Suggestion of benefit (one case report or series)
- Selected mitochondrial disorders
- Glycogenosis type V
- Landau-Kleffner syndrome
- Lafora body disease
- Subacute sclerosing panencephalitis (SSPE)

Table 2. Contraindications to the use of the KD

Absolute
- Carnitine deficiency (primary)
- Carnitine palmitoyltransferase (CPT) I or II deficiency
- Carnitine translocase deficiency
- β-oxidation defects
 - Medium-chain acyl dehydrogenase deficiency (MCAD)
 - Long-chain acyl dehydrogenase deficiency (LCAD)
 - Short-chain acyl dehydrogenase deficiency (SCAD)
 - Long-chain 3-hydroxyacyl-CoA deficiency
 - Medium-chain 3-hydroxyacyl-CoA deficiency
- Pyruvate carboxylase deficiency
- Porphyria

Relative
- Inability to maintain adequate nutrition
- Surgical focus identified by neuroimaging and video EEG monitoring
- Parent or caregiver noncompliance
Ketogenic Diet

- Most effective for refractory myoclonic epilepsies
- 1/3 will become seizure free, 1/3 will have significant benefit, and another 1/3 will have no change, or will worsen
- These include SMEI, and Doose syndrome

Common side effects
- Lack of weight gain
- Acidosis
- Constipation
- Kidney stones
- Growth inhibition
- Hyperlipedemia

Less common side effects
Ketogenic Diet

- Usually continued for as long as it is beneficial
- Typically it is kept for 1-2 years
- The diet is tapered over several months

Vagus Nerve Stimulator (VNS)
What is VNS?

- A generator is attached to a bipolar lead
- Interrogation and programming are done using a wand and handheld computer
What is VNS?

- Implantation is performed under general anesthesia.
- The lead is attached to the vagus nerve, and the generator is placed in the anterior chest.

Relevant anatomy and physiology

- Vagus nerve is generally a parasympathetic efferent nerve.
- ~80% of fibers provide the brain with visceral information for head, neck, thorax, and abdomen.
- Right vagus innervates the cardiac atria, while left vagus innervates the cardiac ventricles.
Relevant anatomy and physiology

- Vagus innervation of ventricles is less dense than that of the atria, fewer cardiac side effects are seen

How does it work?

- It is also postulated that VNS exerts its effects by modulation of chemicals affecting cerebral cortex and hippocampus
- VNS also modifies cerebral electrical activity through thalamocortical pathways, but the exact mechanism of action is not known
Potential side effects

- Most common side effects seen are:
 - Hoarseness
 - Cough
 - ‘Sigh’ like deep breaths
- These side effects may be alleviated by changing the settings
- Relief is usually immediate

Epilepsy Surgery
Epilepsy surgery

- Focal epilepsy/generalized epilepsy
- MRI and EEG and other testing must show concordant findings for high success rates
- Epilepsy has to be refractory
- Results in improvement in QOL, cognition,
- 2 main procedures:
 - Single stage procedure
 - 2 stage procedure

Pre-Surgical Workup

- VEEG
- High resolution MRI
- PET scan
- Ictal SPECT
- WADA or fMRI
Surgical Evaluation

- **One step**
 - A single epileptogenic lesion is identified
 - Neurosurgeon resects the lesion (and the surrounding tissue)

- **2-step**
 - For better localization, strips, grids or depths are placed in the brain
 - With hardware in place, patient is monitored in EMU to record seizures
 - Cortical mapping
 - Resection
Epilepsy surgery

- Focal cases are lesional
- Generalized could benefit from procedures like CC to prevent falls
- For lesional temporal cases, post-surgical seizure freedom rates could be as high as 70-80%!
- Extra temporal could have variable rates that depend on the size of the lesion

Epilepsy surgery

- The goals of the surgery are to render a patient seizure free, or to significantly decrease the number of seizures
- Removal of the surgical focus without resultant neurological deficits
- Improvement in quality of life
Seizure precautions

• “Would you hurt yourself if you lost consciousness doing an activity?”
• Should kids with epilepsy swim?
 – YES!
• Play sports?
 – YES!

Seizure precautions
(Elements that worsen sz)

• Drugs—Yes! Marijuana is a drug!
• Certain medications
 – Benadryl, Meropenem, Imipenem
• Sleep deprivation
• Febrile illnesses
• Stresses on the body—as in surgical procedures
• Medication non-adherence!!!
What to do when witnessing a seizure

- Make sure the patient is safe
- DO NOT place anything in mouth (at least not through the teeth!)
- Roll patient to side
- Put head of bed down
- One eye on the watch/clock
- Document the sequence of events

Rescue Medications

- Medications meant to abort seizures, thereby preventing:
 - Status epilepticus
 - Brain damage
 - Injuries
 - Hospitalizations
Rescue Medications

- Are benzodiazepines
 - Diazepam
 - Lorazepam
 - Clonazepam
 - Midazolam

Rescue Medications

- May also use these meds to break seizure clusters
- Precautions when using these medications include:
 - Sedation
 - Respiratory depression (if high or multiple doses are given)
 - Psychosis or hyperactivity is also rarely seen
Outcomes

- Outcomes depend on multiple factors that include:
 - Etiology
 - Comorbidities
 - Epileptic syndromes
 - Family history

Driving and Epilepsy
Driving and Epilepsy

- Driving a car is critical to employment, self-esteem and socialization
- Seizures while driving pose the risk of a crash
- The risk depends on certain factors like seizure frequency
- Therefore, individuals with controlled epilepsy may drive with legal restrictions

Driving and Epilepsy

- There is no clear scientific evidence to define these restrictions
- These restrictions and rules vary among states
- The rules in general limit licensing individuals at highest risk for seizures while driving
Driving and Epilepsy

• The primary standard for determining that risk is the seizure free interval
• Some states make it mandatory for the physicians to report names of patients with seizures to the D(B)MV.
Driving and Epilepsy

• As a medical professional, you need to:
 – Explain the state specific laws
 • www.epilepsyfoundation.org
 – Make clear documentation in the patient record of the discussion
 – Provide alternates to driving (Public transportation)
 – Encourage strict medication compliance

One last thing…
The Bottom Line!

- Pediatric epilepsy is very different from adult onset epilepsy
- Medication choice and dosage depends on the type of epilepsy
- Good history, MRI, EEG are extremely helpful for a correct diagnosis
- This helps in choosing the right medication

The Bottom Line!

- For medically intractable cases, think about non-pharmacologic options (KD, VNS, surgery)
- Must address precautions (Driving, swimming, sports etc)
- Outcomes vary depending on the syndrome or type of epilepsy
The Bottom Line

• Seizures come in all different shades
• In pediatric epilepsy, we look at the bigger picture and not just seizures
• Accurate diagnosis is of paramount importance
• Treatment is specific for seizure types
• Use of non-pharmacologic means to treat epilepsy

THANK YOU!